

Advanced Tracking System for Crystal Physics

- Stefano Carsi (736512)
- Master Degree in Physics
- Department of Science and High Technology (Como)
- ▶ March 19th, 2024

Supervisor: Prof.ssa Michela Prest Co-supervisor: Dr. Erik Vallazza

Overview

- What crystals and directional effects are
- Channelling in straight and bent crystals
- ► The GALORE and e+BOOST projects
- The INSULAB Test System
- Upgrading the test system to match the experiments requirements
- Laboratory and on beam characterization of the upgraded system
- Preliminary beamtests results of the two experiments

What are crystals?

- Materials in which their microscopic constituents (either atoms, molecules or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions
- Depending on the relative orientation with an observer, the crystal may or may not show its ordered structure

What is Channelling?

- Stark (1912) predicted the existence of "easy passages" along "open channels" in crystal lattice
- Lindhard (1964): theoretical description of the phenomenon
- The interaction of an impinging particle with the crystal atoms/ions is described with a screened Coulomb potential of the whole crystal lattice
- Two types of channelling: axial and planar
- A particle is trapped in a potential well and forced to propagate oscillating within the potential well itself

Channelling in bent crystals

Critical angle: angular acceptance for channelling phenomenon (2) to happen

$$\theta_c \approx \sqrt{\frac{U(\rho)}{\frac{1}{2}pv}}$$

(a)

(b)

- If a crystal is bent along the direction of motion, the net effect for a channelled particle is a deflection of its trajectory
- Other phenomena: Dechannelling (3), Volume Reflection (4), Volume Capture (5)

GALORE

- Project funded by INFN (Istituto Nazionale di Fisica Nucleare)
- Development of a new generation of bent crystals
- ► Goal: increase **channelling efficiency** up to ~100%
- Idea: the insertion of a lattice interruption at the very beginning of the crystal should act as a focusing lens

Channelling efficiency: percentage of the particles which impinge within the crytical angle and maintain the channelling condition along the whole crystal

Sketch of the crystal in the XZ plane

Radiation production

- An accelerated charged particle emits radiation
- ► For electrons, by using a quantum model → Bethe-Heitler approximation for bremsstrahlung

$$\frac{d\sigma}{d\hbar\omega} = \frac{16}{3}Z^2\alpha r_e^2 \frac{1}{\hbar\omega} \left[1 - \frac{\hbar\omega}{E} + \frac{3}{4}\left(\frac{\hbar\omega}{E}\right)^2\right] \ln\left(183\,Z^{-1/3}\right)$$

Coherent bremsstrahlung: increase in the radiation production by an electron which scatters coherently on many atoms along its way inside an oriented crystal

A crystal-based hybrid positron source

- Positron source: key element for future particle colliders
- Conventional approach: electron beam on high-density and high-Z target
- Hybrid design: oriented crystal for producing photons which can convert into electron-positron pairs inside an amorphous converter
- Collimator or bending magnets may improve the performance
- e+BOOST project
 - Funded by the Italian University and Research Minister as PRIN (Progetti di Rilevante Interesse Nazionale)
 - Goal: test different crystal radiators

Two projects, same requirements

The GALORE and e+BOOST projects require

- High-resolution particle tracking
- Particle beams with small profiles and small angular divergence
- However, as the beam size is reduced, the angular divergence increases
- Need to select only a small portion of the beam to acquire a large enough statistics
- This thesis work focused on the upgrade of the electronics to allow for the collection of the required statistics in a limited time

The INSULAB silicon tracking detectors

 Each microstrip module can provide a single coordinate
 → Two modules in "XY" configuration

Beam Telescopes: • 1.92 x 1.92 cm²

• 50 µm pitch

The ASICs

- Application Specific Integrated Circuits
- Analog part: integrates the deposited charge and samples the output signal at the peak
- Digital part: generates a trigger signal when a charged particle crosses a given interval of strips

The Trigger Configuration Board

- VME Board with a Field Programmable Gate Array (FPGA)
- The firmware of the board was upgraded to:
 - Load the Trigger Configuration Mask in a Shift Register, including the strips on which to trigger
 - Load the trigger thresholds set by a DAC on the Repeater Board
 - Receive the trigger signal from each silicon module
 - Implement logic conditions on the signals of the detectors, such as the AND or the OR
- The software was also upgraded to control this board

13

Reg ou

•

The ASICs Laboratory Characterization (1)

Noise trigger rate as a function of the Threshold for each strip: by excluding the noisy strips, it is possible to choose a low threshold

Study of the **analog response** of each channel with an external **calibration signal** of different amplitudes

The ASICs Laboratory Characterization (2)

Mean value of the peak distribution as a function of the amplitude of the calibration signal

The ASICs Laboratory Characterization (3)

- Study of the ASICs
 saturation in terms of MIPs
 → how many particles the detector can count
- Cosmic rays: provide real MIPs
- ⁹⁰Sr: good approximation if placed directly over the module under study
- Linear up to 1400 ADC \rightarrow Linear for 8-13 MIPs

Telescope 2-3 elescope 1 First on beam characterization Beam pipe April 2023 @ BTF Frascati First real test with a beam: reducing the trigger strip interval results in a reduction of ADC Board Trigger: AND the angular divergence of the Y ME Crate Tele 1 - X Tele 1 - Y counts 1.0 0.8 Narrow region trig Narrow region trig 0.8 Wide region trig Wide region trig ····· External trig ----- External trig Normalized 0.4 0.2 0.0 Normalized 0.0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Region sili 1 Region sili 2 X pos [cm] X pos [cm] (strips) (strips) Tele 2 - X Tele 2 - Y Ext trig 1.0 0.8 Ext trig 1.0 0.8 Narrow region trig Narrow region trig 120 - 190 130 - 190 Wide region trig Wide region trig External trig External trig 130 - 190 2.46 ± 0.14 120 - 160Normalized 0.6 0.7 0.0 0.6 0.4 120 - 160 140 - 180 2.10 ± 0.12 ma 120 - 160 150 - 170 2.36 ± 0.32 0.2 è 130 - 150 150 - 170 1.87 ± 0.22 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 120 - 160 155 - 165 1.67 ± 0.15 X pos [cm] X pos [cm] 135 - 145 0.93 ± 0.01

ow Voltage Power Supply Silicon bias Power Supply y angular divergence (mrad) 3.02 ± 0.02 2.39 ± 0.07

150 - 170

GALORE Beamtest June 2023 @ H8

- Test of the channelling efficiency
- Need to track the incoming and outgoing particle
- The downstream detector (S3) must "see" both the direct and the channelled beam
- The H8 beam is ~1cm → Need to select only particles impinging on the crystal

GALORE Beamtest (3) Aligning the crystal

- ► The crystal must be **centered** on the beam
- Idea for alignment: particles scatter when they cross material, therefore the rms of the angular deflection distribution increases

GALORE Beamtest (4) Preliminary results

- 50 μm wide slice in the middle of the trench
- Vertical slice ± one critical angle wide
- > Preliminary **channelling efficiency:** 65%
- Can be caused by imperfections in the crystal lattice

e+BOOST Beamtest (2) Aligning the crystal

- **Easy task** with respect to the GALORE crystal
- A direct effect of the interaction between the beam and the crystal can be measured, namely the produced radiation
- However, a very large statistics is required with a wide beam
- Triggering on a 3cm wide vertical region allowed to acquire all the three crystals together

Conclusions & outlooks

- The tracking system was upgraded to allow the silicon microstrip detectors to self generate a trigger signal when a charged particle crosses a given strip interval -> Beam size and angular divergence reduced selecting a portion of the beam to match the experimental requirements of GALORE and e+BOOST
- The upgraded test system proved to work properly, for both the experiments, allowing the collection of a statistics large enough in a short time
- During the GALORE beamtest, statistics was acquired 20-30 times faster
- For the crystal-based hybrid positron source beamtests, different crystal radiators have been tested, and the relative increment in the produced radiation have been measured
- The system is versatile: in the future it can be applied to any kind of beamtest where a high-resolution particle tracking is needed, with the possibility to select a small portion of the beam thus reducing also the divergence, which is a fundamental parameter when studying oriented crystals

CERN PRÉVESSIN SITE

Thanks for your attention

Backup slides

Miller indices

- [hkl] represents a direction
- (hkl) represents a set of directions, that is all the [hkl] equivalent directions under the symmetry group of the crystal. For instance, in a cubic crystal the (100) directions are [100], [010], [001], [100], [010] and [001]
- (*hkl*) represents a plane
- {*hkl*} represents a set of all the planes equivalent under the symmetry group of the crystal, as for $\langle hkl \rangle$ in the direction case.

What are bent crystal already used for?

Few mm of crystals can act as hundreds of Tesla magnets:

- Beam collimation
- Extracted beamlines
- Physics Beyond Standard Models: the magnetic moment of short-lived charmed baryons can be measured from the magnetic moment precession induced inside a bent crystal

Multi-stage high-precision goniometer

CERN Beamlines

The CERN accelerator complex Complexe des accélérateurs du CERN

 \downarrow H⁻ (hydrogen anions) \downarrow p (protons) \downarrow ions \downarrow RIBs (Radioactive Ion Beams) \downarrow n (neutrons) \downarrow \overline{p} (antiprotons) \downarrow e⁻ (electrons) \downarrow μ (muons)

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive EXperiment/High Intensity and Energy ISOLDE // MEDICIS // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // Neutrino Platform

Main features of the ASICs

 Table 3.1: Main features of the TA1 ASIC.

Table 3.2: Main features of the VA2 ASIC. Table from [78]. Table 3.3: Main features of the VA1TA ASIC. Table from [78].

ASIC name	TA1	ASIC name	VA2	ASIC name	VA1TA
Process (N-well CMOS)	$1.2\mu{ m m}$	Process (N-well CMOS)	1.2 µm	Process (N-well CMOS)	$0.35\mu{ m m}$
Surface	$4.85 \times 6.9 \mathrm{mm^2}$	Die surface	$6.18 \times 4.51 \mathrm{mm^2}$	Die surface	$9.28 \times 6.12 \mathrm{mm^2}$
Thickness	$\sim 600\mu{ m m}$	Die thickness	$\sim 600\mu\mathrm{m}$	Die thickness	$\sim 725\mu{ m m}$
Number of channels	128	Number of channels	128	Number of channels	128
Input pad size	$50 \times 90 \mu m^2$	Input pad size	$50 \times 90 \mathrm{um^2}$	Input pad size	$50 \times 90 \mathrm{um^2}$
Input pad pitch	100 µm	Output pad size	$80 \times 90 \mathrm{um}^2$	Output pad size	$90 \times 90 \mathrm{um^2}$
Control pad size	$90 \times 90 \mu m^2$	ENC at 1 us of peaking time	80 ± 15 $C_{\rm c}$ (o rmg)	FNC at 1 us of posking time	180 ± 75 <i>C</i> (<i>c</i> rmg)
Control pad pitch	$200\mu{ m m}$	ENC at 1 µs of peaking time	$80 \pm 13 \cdot C_d \ (e-\text{Tims})$	ENC at 1 µs of peaking time	$100 + 7.5 \cdot C_d (e - 100)$
ENC at 2 us of peaking time	$165 \pm 6.11 / \mathrm{pF}$	Power consumption	$170\mathrm{mW}$	Power consumption	$195\mathrm{mW}$
Peaking time	1 - 3 µs	Slow shaper peaking time	1 - 3 µs	Slow shaper peaking time	0.3 - 1 μs
Dynamic range	± 5 MIPs	Fast shaper peaking time	not present	Fast shaper peaking time	$0.075\mu s$ or $0.3\mu s$
Current gain	$\sim 20\mu A/fC$	Dynamic range	$\pm 4 \text{ MIPs}$	Dynamic range	$\pm 10 \text{ MIPs}$
Gain	$25\mathrm{mV/fC}$	Current gain	$\sim 25\mu\mathrm{A/fC}$	Current gain	$\sim 10\mu A/fC$

VA1TA Problematic channels

2000

Hold [ns] (c) 3000

1000

33

5000

VA2TA Lab Characterization

GALORE strange regions

GALORE Beamtest Performance of the detectors

- Pull: ratio between the PH of the channel with the maximum signal and its corresponding noise rms
- Eta: describes the symmetry in the sharing of the charge between nearby strips. Different shapes for single and double side detectors

$$\eta_{\text{right}} = \frac{-\text{PH}_{\text{max}} + \text{PH}_{\text{right}}}{\text{PH}_{\text{max}} + \text{PH}_{\text{right}}}$$
$$\eta_{\text{left}} = \frac{\text{PH}_{\text{max}} - \text{PH}_{\text{left}}}{\text{PH}_{\text{max}} + \text{PH}_{\text{left}}}$$

Bethe-Bloch

